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Abstract. The Enskog-Landau kinetic equation is considered to describe non-equilibrium processes of a
mixture of charged hard spheres. This equation has been obtained in our previous papers by means of the
non-equilibrium statistical operator method. The normal solution of this kinetic equation found in the first
approximation using the standard Chapman-Enskog method is given. On the basis of the found solution
the flows and transport coefficients have been calculated. All transport coefficients for multicomponent
mixture of spherical Coulomb particles are presented analytically for the first time. Numerical calculations
of thermal conductivity and thermal diffusion coefficient are performed for some specific mixtures of noble
gases of high density. We compare the calculations with those ones for point-like neutral and charged
particles.

PACS. 05.20.Dd Kinetic theory – 05.60.-k Transport processes – 52.25.Fi Transport properties

Construction of kinetic equations for dense gases and
plasma is one of the most important problems in the
kinetic theory of classical systems. A sequential kinetic
theory of dense systems does not exist yet. The Enskog-
Landau kinetic equation has been obtained recently in [1]
to describe transport processes in non-equilibrium system
of charged hard spheres. This equation has its name due to
the structure of total collision integral. This integral con-
tains terms of revised Enskog theory, kinetic mean field
theory and Landau-like collision integral [2]. The influ-
ence of the last term on system behaviours has been of
our main interest. This term is caused by the long-range
interactions in a system. In particular, it was shown [2]
that in the case of small densities and weak interactions
the force autocorrelation function and the entire last term
in the total collision integral converts to the usual Landau
collision integral for a rarefied plasma.

The new kinetic equation and its collision integral are
adequate only for systems which can be modelled by char-
ged hard spheres. The great credit for this result is shared
by a choice of interparticle interaction potential in additi-
ve-like form: hard spheres interaction plus certain “smo-
oth” long-range part (Coulomb interaction in our case).
It allowed to avoid divergency at short distances. Unfor-
tunately, a logarithmic divergency at long distances still
remains, and to eliminate it one should introduce a cut-
off radius of integration (like a Debye one). But unlike
the classical Debye formula, in this case we used a modi-
fied one, which takes into account particle sizes σ. For the
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Enskog-Landau kinetic equation [1] a normal solution has
been found by means of the standard Chapman-Enskog
method. A stress tensor Π and heat flow vector q have
been obtained as well. Expressions for transport coeffi-
cients like bulk κ and shear η viscosities and thermal con-
ductivity λ have been derived from structures of Π and q.
Numerical calculation of transport coefficients for neutral
and once-ionized argon shows a good agreement between
the theory and experimental data. In [3,4] these results
were generalized to non-stationary non-equilibrium pro-
cess. Whereas to find the normal solution the Chapman-
Enskog method [5] is used in [1,2], the much more power-
ful method of boundary conditions [6] is used in [3,4]. In
the limiting case of a stationary non-equilibrium process,
the results of [4] completely convert to those of [1]. For
hydrodynamic description of fast processes it is better to
use the method of boundary conditions [6].

Application of the theory to a multicomponent system
was performed step-by-step. The Enskog-Landau kinetic
equation for M -component (M > 2) mixture of charged
hard spheres has been proposed in [7]. Just the same, the
normal solution, flows and transport coefficients have been
found by means of the standard Chapman-Enskog method
for a two-component system only. New transport coeffi-
cients which appear in multicomponent systems are mu-
tual diffusion Dαβ and thermal diffusion Dα

T coefficients
(here α, β are mixture indices). Numerical calculation of
the obtained transport coefficients showed a good agree-
ment between the developed theory, experimental data,
results of other theories and MD simulations.
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In view of identifying of a normal solution of the kinetic
equation for a multicomponent system of charged parti-
cles results of [7] are not the first. Namely, it is worthy to
note that the normal solution of the kinetic equation for
completely ionized plasma is found in [8] using the stan-
dard Chapman-Enskog method in the 3rd approximation.
But dense systems of finite size particles are consistently
considered for the first time in our papers [1–4,7].

In this letter we present our solution of the Enskog-
Landau kinetic equation for a multicomponent mixture of
charged hard spheres. Similarly to [7], we use the stan-
dard Chapman-Enskog method. It is known [5] that the
correction expression for one-particle distribution function
in the first approximation can be chosen in two different
ways. According to the first one described in [9], the cor-
rection for one-particle distribution function of α-kind is
proportional to dα – a diffusion thermodynamic force of
α-kind only. The second way is proposed in [5]. In this
case the correction is proportional to a certain superposi-
tion of diffusion thermodynamic forces of all components
of a mixture. It was shown [10] that the second method
gives much better results because, unlike the first method,
after crossing to linear thermodynamics equations it is
important that Onsager’s reciprocal relations obey. Nev-
ertheless, in [7] for a two-component system we used the
first method because the complication (or generalization)
like in [5] is essential for two-component systems in some
cases only. Namely, when the density of particle number
of some mixture component (or components) is not con-
served. Such a situation can be realized in gas mixtures
where chemical reactions between components may take
place, or in multicomponent mixtures, where transitions
between states with different internal degree of freedoms
are possible.

Let us consider the Enskog-Landau kinetic equation
for multicomponent mixture of charged hard spheres:

[
∂

∂t
+ iL(1α)

]
f1(xα1 ; t) =

M∑
β=1

Icoll

(
f1(xα1 ), f1(xβ2 )

)
, (1)

here f1 denotes the one-particle distribution function,
x ≡ {r; p} is a set of phase coordinates in a phase space
while r and p denote the Cartesian coordinate and particle
momentum, respectively. Collision integral of this equa-
tion has an additive structure

Icoll = I
(0)
HS + I

(1)
HS + IMF + IL (2)

and each term in (2) is defined like in [7]: the first and sec-
ond ones are from so-called hard sphere part of interpar-
ticle interaction – collision integral of the revised Enskog

theory RET:
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;

the third one is caused by taking into account of long-
range interparticle interaction in the mean field ap-
proximation KMFT (this term is of the first order in
interaction):

IMF =
1
mα

∫
drβ2

∂

∂rα1
Φl(|rαβ12 |)

× gαβ2 (rα1 , r
β
2 ; t)n1(rβ2 ; t)

∂

∂vα1
f1(xα1 ; t);

and, finally, the third one is the so-called Landau-like col-
lision term (it is of the second order in interaction):

IL =
1

4(m∗)2

∂

∂vα1

∫
dx2 g2(rα1 , r

β
2 ; t)

[
∂Φl(|rαβ12 |)
∂rαβ12

]

×
0∫

−∞

dt′
[
∂Φl(|rαβ12 + gt′|)

∂rαβ12

][
∂

∂vα1
− ∂

∂vβ2

]

× f1(xα1 ; t)f1(xβ2 ; t).

In expressions for I(0)
HS , I(1)

HS , IMF and IL we used the fol-
lowing designations: b, impact parameter; β, an analogue
of local inversed temperature; ε, azimuthal angle of scat-
tering; gαβ , relative velocity of α- and β-kind particles;
gαβ2 , two-particle correlation function; m∗, reduced mass;
mα, partial masses of particles; n, total density of par-
ticles number; nα, partial densities of particles numbers;
r̂αβ12 , unit vector along rαβ12 direction; v′, velocities of hard
spheres after collision; θ(. . . ), Heaviside unit step function.

In the limit of a system of point-like charged parti-
cles of low density, the collision integral (2) transforms
to the usual Landau collision integral [11,12]. Follow-
ing a concept of consistent description of kinetics and
hydrodynamics of non-equilibrium processes [13–17], ki-
netic equation (1) should be solved together with local
conservation laws [4] for additive invariants. These addi-
tive invariants in collisions (or scattering) of charged hard
spheres are mass (or total density), momentum and total
energy [5,9,11,12]. It should be noted that for rarefied sys-
tems it was sufficient to consider kinetic energy only, while
in dense systems potential interaction energy is essential
and cannot be neglected.
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The solution of equation (1) found in the first approx-
imation by means of the Chapman-Enskog method is

f
(1)
1 (xα1 ; t) = f

(0)
1 (xα1 ; t)

[
1 + ϕ(xα1 ; t)

]
, (3)

where f
(0)
1 (xα1 ; t) is the local quasi-equilibrium Maxwell

one-particle distribution function:

f
(0)
1 (xα1 ; t) =

nα(r1; t)
[

mα

2πkBT (r1; t)

]3/2

exp

{
−mα (cα1 (r1; t))2

2kBT (r1; t)

}
.

This function is the solution of equation (1) in the ze-
roth approximation and satisfies the Fredgolm conditions.
Correction ϕ(xα1 ; t) reads:

ϕ(xα1 ; t) = −Aα[(Cα1 )2]Cα
1 (r1; t) ·∇ lnT (r1; t) (4)

−Bα[(Cα1 )2]
[
Cα

1 Cα
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1
3
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]
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Eαβ [(Cα1 )2]Cα
1 (rα1 ; t) · dβ(r1; t).

Here

Cα = Cα(r; t) =
[
mα

2kBT

]1/2

cα(r; t), cα(r; t) = vα − 〈v〉.

In other words, 〈v〉 is nothing but hydrodynamical veloci-
ty V(r; t). Functionals Aα[(Cα1 )2], Bα[(Cα1 )2], Eαβ [(Cα1 )2]
are defined by the Sonine-Laguerre polynomials [5,9].

Having the solution of equation (1) in the first approx-
imation, one can calculate the stress tensor Π, heat flow
vector q and diffusion velocity Vd in the same approxi-
mation. The expression for Π reads:

Π = pI− κ (∇ ·V) I− 2ηS,

where p is total pressure in the first approximation (I is
the unit tensor, S is the velocities shift tensor):

p = nkBT +
2
3
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− 2
3
π
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∂

∂x
Φl
αβ(x),

(gαβ2 (x) is the binary quasi-equilibrium correlation func-
tion, Φl

αβ(x) is a long-range potential of interaction); κ is
the bulk viscosity of a multicomponent mixture:

κ =
4
9

M∑
α,β=1

σ4
αβgαβ2 nαnβ

√
2πkBTµαβ =

M∑
α,β=1

καβ , (5)

η is the shear viscosity of a multicomponent mixture:
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3
5
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1
2
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+
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]
.

The expression for heat flow q reads:

q = −λ∇T +
M∑
α=1

ωαdα.

Quantities ωα are connected with a matter transfer due
to a temperature gradient (the Soret effect) and due to a
heat transfer caused by a gradient of concentration (the
Dufour effect). If one also takes into account a barrodif-
fusion process, this constitutes the total contribution into
a heat flow from cross transfer processes. λ is the thermal
conductivity coefficient of a multicomponent mixture:

λ =
M∑

α,β=1

3kB καβ
mα +mβ

−
√

2k3
BT (7)

×
[

5
4
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+
2π
3

M∑
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σ3
αβgαβ2 nαnβ

mα +mβ

[
3µαβ√
mβ

Aβ(1)−√mβAβ(0)
].

It should be noted, however, that not λ, but the heat
conductivity coefficient χ is measured experimentally. It is
mutually connected with λ by the relation χ = λ/(ρCp),
where Cp is the heat capacity at constant pressure.
Diffusion velocity in the first approximation reads:

Vd
α = −Dα

T∇ lnT −
M∑
β=1

Dαβdβ ,

where

Dα
T =

√
kBT

2mα
Aα(0) (8)

is the thermal diffusion coefficient of a mixture, while

Dαβ = −n
√
kBT

2mα
Eαβ(0) (9)

is the mutual diffusion coefficient. Quantities Bα(0) in (6),
Aα(0) and Aα(1) in (7) and (8), Eαβ(0) in (9) are nothing
but coefficients of expansion in the Sonine-Laguerre poly-
nomials. Their general definition for an arbitrary potential
of interaction is given in [5]. The calculations for a special
case of a two-component mixture is performed in [7]. All
the obtained quantities Bα(0), Aα(0), Aα(1) and Eαβ(0)
ultimately depend on the so-called Ω -integrals.

Numerical calculation for transport coefficients κ, η,
λ, Dα

T and Dαβ has been performed. For two- and
three-component mixtures of neutral and charged hard
spheres we studied the dependences of transport coef-
ficients on density, temperature, and concentration ra-
tio of some mixture components [18]. There are a lot
of approaches which allow to calculate viscosity with
sufficient accuracy. However, these approaches do not
allow to calculate well thermal conductivity for dense
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Fig. 1. Concentration ratio dependences of transport coefficients of some binary and ternary systems of neutral and charged
hard spheres. Thermal conductivity (a) and thermal diffusion coefficient (b) of a system Ar+–Kr+ at total concentration
n = 2 × 1020 cm−3. Thermal conductivity of a system He–Kr–Ar+ (c) at total concentration n = 2 × 1021 cm−3, xAr = 0.2
or nAr = 4 × 1020 cm−3. Thermal conductivity of a system He–Ar+–Kr+ (d) at total concentration n = 1.25 × 1021 cm−3,
xHe = 0.6.

and moderately dense systems. Our theory is devoid of
such a circumstance. This is reached due to the follow-
ing: firstly, the Enskog-Landau kinetic equation is ob-
tained by means of the non-equilibrium statistical oper-
ator method from the first principles of statistical me-
chanics without phenomenological assumptions; secondly,
kinetics and hydrodynamics in the studied systems are
considered simultaneously. The last factor is very im-
portant for dense and moderately dense systems [13–17].
As a result, we obtain a good agreement between the the-
ory and experimental data. In Figure 1 we present the
concentration ratio dependences of some transport coeffi-
cients for two- and three-component mixtures for charged
hard spheres. In all cases, the total concentration is con-
sidered to be constant. Figure 1b illustrates the limiting
cases for the thermal diffusion coefficient Dα

T of a system
Ar+–Kr+ when xKr → 0 or xKr → 1, that is for one-
component systems. In this case, diffusion thermodynamic
forces vanish and thermal diffusion vanishes too. Figure 2
shows numerical calculations for the same systems as in
Figure 1, but for point-like neutral and charged particles.
Transport coefficients for last ones were calculated as for
the usual Boltzmann-Landau kinetic equation [11]. The

magnitude of transport coefficients therewith slows down.
It is interesting to note that in three-component systems
of point-like particles (Figs. 2c and d) transport coeffi-
cients depend on Λ slightly. It is well to bear in mind that
this takes place if at least one component is not charged.

From the present letter, one can draw the following
conclusions. The obtained Enskog-Landau kinetic equa-
tion for charged hard spheres turned out to be very useful
for several purposes. First of all, the collision integral of
this equation does not contain a divergency at small dis-
tances. Secondly, the normal solution and all transport
coefficients have analytical structure. They can be easily
used to study some specific systems. Finally, the analyt-
ical structure of transport coefficients allows us to find
fast and easily systems, which can be best described by
the obtained kinetic equation, as well as density and tem-
perature ranges, where the agreement between the theory
and experimental data is the closest. At the same time,
our theory has not met with success in treatment of the
free electrons role. Basing on the conclusions by Ichimaru
et al. [19], consistent treatment of electrons is possible only
within the frame of quantum kinetic theory. Our theory
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Fig. 2. The same as in Figure 1, but for systems of neutral and charged point-like particles at T = 5000 K for (a), (b) and (c)
and at T = 6500 K for (d). Parameter Λ indicates for what value of Coulomb logarithm calculation was performed.

is purely classical. Just the same, our papers [1,7] show
very good agreement between theoretical calculations and
experimental data.

The next step in this theory is to calculate a dynamical
screening radius in a system. Partially this problem has
been already solved in our recent paper [20].
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